Strongly Noetherian rings and constructive ideal theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Noetherian rings and constructive ideal theory

We give a new constructive definition for Noetherian rings. It has a very concrete statement and is nevertheless strong enough to prove constructively the termination of algorithms involving “trees of ideals”. The efficiency of such algorithms (at least for providing clear and intuitive constructive proofs) is illustrated in a section about Lasker–Noether rings: we give constructive proofs for ...

متن کامل

Equivariant ^-theory for Noetherian Rings

A number of results are proved concerning the Quillen ^-theory K+(S*G) of the skew group ring S*G, where S is a Noetherian ring and G is a finite group of automorphisms of 5. Applications are given to the computation of AT-groups of group algebras and of equivariant /^-theory for affine varieties.

متن کامل

Tilting Theory for Coherent Rings and Almost Hereditary Noetherian Rings

We generalize two major ways of obtaining derived equivalences, the tilting process by Happel, Reiten and Smalø and Happel’s Tilting Theorem, to the setting of finitely presented modules over right coherent rings. Moreover, we extend the characterization of quasi–tilted artin algebras as the almost hereditary ones to all right noetherian rings. We also give a streamlined and general presentatio...

متن کامل

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2004

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2003.02.001